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Free convection beneath a heated horizontal
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Laminar flow beneath a finite heated horizontal plate in a rapidly rotating system
is considered in both axisymmetric and planar geometries. In particular, we examine
the case where the Ekman layer is confined well within a much deeper (yet still thin)
thermal boundary layer. This situation corresponds to the regime E−3/2 � Ra � E−5/2,
where E and Ra are the natural Ekman and Rayleigh numbers for the system
(equation (2.6)). The outward flux of buoyant fluid from beneath the plate occurs
primarily in the Ekman layer, while outward flow in the thicker thermal boundary
layer is inhibited by a dominant thermal-wind balance. The O(Ra−1/2E−3/4) thickness
of the thermal boundary layer is determined by a balance between Ekman suction
and diffusion. There are several possible asymptotic regimes near the outer edge of
the plate, differing only by logarithmic factors, but in all cases the edge corresponds to
a simple boundary condition on the interior flow. With a uniform plate temperature,
the dimensionless heat transfer (equation (7.6)) is given by a Nusselt number Nu ∼
1
2
Ra1/2E 3/4[ln(Ra−1E−5/2)]1/2. The solution for a uniform plate heat flux is also

presented.

1. Introduction
The flow that develops beneath a finite heated horizontal plate is a fundamental

problem in natural convection. The heating creates a pool of buoyant fluid directly
beneath the plate. Owing to drainage of this fluid at the edge, the pool is thicker in
the middle, and the resulting horizontal pressure gradient drives the fluid outwards.

The non-rotating case has been studied extensively over a wide range of Prandtl
numbers. For example, experiments (Aihara, Yamada & Endo 1972; Hatfield &
Edwards 1981), numerical simulations (Goldstein & Lau 1983), and theoretical
investigations (Singh & Birkebak 1969; Higuera 1993) have all been reported. For
sufficiently large Rayleigh numbers, the thermal boundary layer is thin compared with
the horizontal scale of the plate. Boundary-layer approximations can be employed,
and reveal that the Nusselt number for the heat transfer from a uniform-temperature
plate scales like Nu ∼ Ra1/5, where Ra is a Rayleigh number based on the size of the
plate. Formal definitions of Ra and Nu are given in (2.6) and (7.6) respectively.

In contrast, we are not aware of any comparable studies of this type of convection in
a rapidly rotating system. Imposed thermal variations on the top surface of a rotating
cylinder have previously been considered by Pedlosky, Whitehead & Veitch (1997).

† Present address: Centre for Mathematical Medicine and Biology, School of Mathematical
Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
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However, this study dealt with linear perturbations to a background stratification,
and was of an enclosed cylinder. Other studies of convection in a rotating system
have considered sidewall heating (e.g. Hunter 1967; McIntyre 1968), or the case where
the buoyancy force is directed away from the horizontal surface at which the thermal
forcing is applied (e.g. Boubnov & Fernando 1999).

In this short paper, we study the simple problem of steady convection in rapid
rotation from beneath a heated horizontal plate — either a circular disk, or an infinite
strip. As in the non-rotating case, there is a buoyant layer and an outward pressure
gradient, but now most of the outflow is expected to be confined to a thin Ekman
layer. We focus our attention on the case where this Ekman layer is thin compared
with the thermal boundary layer,† which in turn is much thinner than the horizontal
scale of the plate. The parameter regime in which this holds is identified, and we
present the solutions for conditions of uniform temperature and of uniform heat flux
on the plate. The assumption of steady flow allows analytical understanding of the
scalings and dominant balances in the flow under the plate and near the edge, and
can partly be motivated by the experimental observations by Pedlosky et al. (1997) of
steady flow in a related problem. Nevertheless, the possibility of unsteady flow cannot
immediately be discounted and, as discussed briefly in § 9, it would thus be desirable
to examine the stability of the steady solutions derived here in future numerical or
experimental work.

As well as being a classical problem in its own right, this study of convection
beneath a heated rotating plate represents a first step towards understanding a
possible flow in the Earth’s fluid outer core just below the core–mantle boundary.
Since the mantle convects much more sluggishly than the core (by a factor of order
106), it imposes a quasi-steady, but spatially variable, heat-flux boundary condition on
the core flow, which influences the Earth’s magnetic field (see e.g. Bloxham & Gubbins
1987; Kohler & Stevenson 1990; Zhang & Gubbins 1992; Olson & Glatzmaier 1996;
Sarson, Jones & Longbottom 1997; Gibbons & Gubbins 2000; Olson & Christensen
2002). One issue in such modelling is whether, and by how much, the imposed heat
flux is sub-adiabatic or super-adiabatic with respect to the core adiabat. For example,
if the heat flux is everywhere sub-adiabatic then a global thermally stratified layer can
form at the top of the core (e.g. Labrosse, Poirier & Le Mouël 1997; Lister & Buffett
1998). In contrast, if the flux is only locally sub-adiabatic, as seems much more likely,
then local stratified patches can form just below the core–mantle boundary (Olson
& Glatzmaier 1996) and spread laterally towards the bounding adjacent regions of
super-adiabatic convection. This spread is loosely analogous to the lateral spread of
the buoyant layer below a heated plate analysed herein, though we note that magnetic
braking plays a significant role in flows near the core–mantle boundary (e.g. Lister
2004) and that a finite plate edge is not the same as bounding adjacent convection.
Nevertheless, the simple problem of a heated plate allows an initial exploration of the
balance between diffusive thickening and rotationally inhibited lateral drainage. From
a theoretical point of view, we observe that laterally driven flow with rapid rotation
has a different asymptotic structure from, for example, the marginal convection states
in a rapidly rotating spherical annulus (e.g. Roberts 1968; Busse 1970; Jones, Soward

† The alternative limit, in which the thermal boundary layer is much thinner than the Ekman
layer, reduces to the non-rotating case, as the thermal boundary layer is then not significantly
affected by the rotation. When the layer depths are comparable the problem requires numerical
solution.
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Figure 1. An overview of the two geometries being considered, showing a circular disk (a)
and a rectangular strip (b). Note the left-handed coordinate system, but with the rotation
vector oriented in the direction of −êz.

& Musse 2000; Dormy et al. 2003), which are driven by net radial heat flow and
dominated by cylindrical rolls around the tangent cylinder.

The problem to be solved is described and the scalings presented in § 2. The
asymptotic solution for a uniform plate temperature is constructed in §§ 3–6 and the
adaptations for a uniform heat flux outlined in § 8. The detailed asymptotic structure
near the plate edge is discussed in § 7 and the Appendix. Our conclusions are sum-
marized in § 9.

2. Problem description
2.1. Governing equations

We consider the flow beneath a horizontal plate of half-width L, held at a constant
temperature �T above the temperature T0 of the ambient fluid. (See § 8 for the case
of a uniform heat flux.) The plate is either a strip that is infinite in the y-direction
and has width 2L in the x-direction, or a circular disk of radius L for which we let
x denote the radial coordinate and y the azimuthal coordinate. In both cases we let
z denote the downward distance from the surface of the plate, gêz the acceleration
due to gravity, and − 1

2
f êz the rotation vector. See figure 1. We denote the velocity

components by (u, v, w) and the pressure by p, and seek solutions in which the flow
is assumed to be steady and independent of y.

We employ the Boussinesq approximation, and assume that the kinematic viscosity
ν, thermal diffusivity κ , and thermal expansivity β are all independent of the temp-
erature T . Conservation of mass implies that

1

x�

∂

∂x
(x�u) +

∂w

∂z
= 0, (2.1)

where � = 0 when the heated region is an infinite strip, and � = 1 when it is a circular
disk. Neglecting the centrifugal term (assuming that Lf 2/g � 1), the components of
the momentum equation are

u
∂u

∂x
+ w

∂u

∂z
− f v = − 1

ρ0

∂p

∂x
+ ν

(
∇2u − �u

x2

)
, (2.2)

u
∂v

∂x
+ w

∂v

∂z
+ f u = ν

(
∇2v − �v

x2

)
, (2.3)

u
∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ g[1 − β(T − T0)] + ν∇2w. (2.4)
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Figure 2. A sketch showing the expected form of the flow, with three distinct regions: the
inner Ekman layer (I), the geostrophic thermal boundary layer (II), and the bulk fluid (III).

Finally, the heat equation is

u
∂T

∂x
+ w

∂T

∂z
= κ∇2T . (2.5)

The boundary conditions on these equations are described later. The dimensionless
parameters are the Rayleigh, Ekman and Prandtl numbers,

Ra =
gβ�T L3

νκ
, E =

2ν

f L2
, Pr =

ν

κ
. (2.6)

2.2. Regions and scalings

Figure 2 shows the anticipated form of the flow beneath the heated plate. The
non-uniform thickness of the thermal boundary layer sets up a horizontal pressure
gradient below the plate. This drives an outward flux in an Ekman layer (region I) of
thickness δE ∼ LE 1/2. The remainder of the thermal boundary layer (region II, typical
thickness δT ) is in geostrophic balance at leading order, so that the pressure gradient
drives a transverse thermal wind v rather than any significant outward flow u.

The divergence of the flux in the Ekman layer sucks fluid up from below, so there is
a small vertical velocity w throughout the thermal boundary layer. This velocity also
penetrates deep into the bulk fluid (region III) by virtue of the Taylor–Proudman
constraint. Since the geostrophic velocity is divergence-free, w is a function only
of x in region II. This vertical velocity sets up an advection–diffusion balance that
determines the thickness of the thermal boundary layer, and thus closes the problem
for x < L.

Since the boundary layers are thin and the flows mainly horizontal, we expect the
vertical pressure gradient to be hydrostatic. Hence

p − p0 − ρ0gz ∼ ρ0gβ �T δT . (2.7)

Balancing the viscous, Coriolis and pressure forces in the Ekman layer gives

(u, v)
ν

δ2
E

∼ (f u, f v) ∼ ∂p

∂x
. (2.8)

The scaling f v ∼ ∂p/∂x also applies in the thermal boundary layer and corresponds
to a thermal-wind balance.

Balancing the Ekman flux with the vertical mass flux, we obtain

w L ∼ u δE. (2.9)
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Finally, an advection–diffusion balance in region II sets the scale for the thermal
boundary layer as

δT ∼ κ

w
. (2.10)

Combining these scaling estimates, we define dimensionless coordinates

X =
x

L
, Y =

y

L
, Z =

z

δT

, ζ =
z

δE

, (2.11)

where

δT = L Ra−1/2 E−3/4 and δE = LE 1/2. (2.12)

For the vertical coordinate, ζ will be used in the Ekman layer (region I) and Z

will be used in the thermal boundary layer (region II). We also define dimensionless
dependent variables by

(u, v, w) =
κ

L
Ra1/2E 1/4

(
U, V, E 1/2 W

)
, (2.13)

p − p0 − ρ0gz = ρ0gβ�T L Ra−1/2E−3/4 P, (2.14)

T − T0 = �T θ. (2.15)

Outside the Ekman layer, the lack of a pressure gradient in the y-direction implies
that the dominant velocity in the x-direction is due to ageostrophic corrections, and
is much smaller than the thermal wind in the y-direction. We estimate u ∼ νv/f δ2

T ,
which leads to a revised scaling of

u(x, z) =
κ

L
Ra3/2E 11/4 Ua(X, Z) (2.16)

in region II.
The scaled variables are substituted into the governing equations (2.1)–(2.5). In

order to obtain the leading-order balances anticipated above, the boundary-layer
scales must be well separated, i.e.

δE � δT � L ⇔ E−3/4 � Ra1/2 � E−5/4 . (2.17)

Physically, the convective flow must be sufficiently large to allow confinement of the
thermal buoyancy to a thin boundary layer, but not so large that the thickness of the
thermal boundary layer becomes as small as that of the Ekman layer.

For simplicity, we also assume that Pr � O(1), which ensures that inertial terms
do not appear prematurely in various places and further complicate the asymptotic
analysis.

3. The Ekman layer
In terms of the scaled variables defined in (2.11)–(2.15), the leading-order equations

within the Ekman layer are

∂W

∂ζ
= − 1

X�

∂

∂X
(X�U ), (3.1)

2V =
∂P

∂X
− ∂2U

∂ζ 2
, (3.2)

2U =
∂2V

∂ζ 2
, (3.3)
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∂P

∂ζ
= O

(
Ra1/2E 5/4

)
, (3.4)

∂2θ

∂ζ 2
= Ra1/2E 5/4

(
U

∂θ

∂X
+ W

∂θ

∂ζ

)
. (3.5)

The boundary conditions are that the velocities vanish and θ = 1 on ζ = 0, and that
the velocities, pressure and temperature match those in the thermal boundary layer
as ζ → ∞.

Equations (3.5) and (2.17) show that the vertical variation in ∂θ/∂ζ across the
Ekman layer is small. Since ∂θ/∂ζ must be matched below to the thermal boundary
layer, which has a much larger vertical scale, we can therefore expect ∂θ/∂ζ to be
small throughout the Ekman layer. Applying the boundary condition at ζ = 0, we
conclude that, at leading order,

θ(X, ζ ) = 1 (3.6)

throughout the Ekman layer. We also note in passing that the right-hand side of (3.5)
is much smaller than the apparent Ra1/2E 5/4 scaling, so that the change in ∂θ/∂ζ is
negligible (in the sense that it is much smaller than its typical magnitude) across the
Ekman layer.

From (3.4), the pressure is vertically uniform within the Ekman layer, so we write

P (X, ζ ) = P0(X), (3.7)

where P0 is imposed by the pressure in the thermal boundary layer as Z → 0.
The remaining equations (3.1)–(3.3) give rise to a standard Ekman-layer flow, with

an outwards flux driven by the horizontal gradient of the, as yet unknown, pressure
P0(X). The horizontal velocities are given by

(U, V ) = −1

2

dP0

dX
(sin ζ e−ζ , cos ζ e−ζ − 1) (3.8)

and, by continuity, the vertical velocity is

W (X, ζ ) =
1

4X�

d

dX

(
X� dP0

dX

)
[1 − (cos ζ + sin ζ )e−ζ ]. (3.9)

4. The thermal boundary layer
The leading-order balances in (2.1)–(2.5) within the thermal boundary layer are

∂W

∂Z
= 0, (4.1)

2V =
∂P

∂X
, (4.2)

2Ua =
∂2V

∂Z2
− Pr−1W

∂V

∂Z
, (4.3)

∂P

∂Z
= −θ, (4.4)

W
∂θ

∂Z
=

∂2θ

∂Z2
. (4.5)

The boundary conditions are obtained by matching to the Ekman layer as Z → 0 and
to some sort of bulk flow as Z → ∞.
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Noting from (4.1) that W = W (X), we solve (4.5) to obtain

θ(X, Z) = θ0(X) e−Z/H (X), (4.6)

where we have written

W (X) = − 1

H (X)
(4.7)

to introduce the thickness H (X) of the thermal boundary layer, and θ0(X) is the
temperature to be matched with the Ekman layer. (Clearly θ0 = 1 for the fixed-
temperature problem, but this notation proves convenient for the fixed-flux problem
in § 8.) We now integrate (4.4) to obtain

P (X, Z) = θ0(X) H (X) e−Z/H (X) + P∞(X), (4.8)

where P∞(X) is given by matching as Z → ∞. From (4.2), the horizontal pressure
gradient induces a thermal wind

V =
1

2

dH

dX

(
1 +

Z

H

)
e−Z/H +

1

2

dP∞

dX
. (4.9)

Finally, (4.3) determines the much smaller ageostrophic outward velocity

Ua =
1

4H 2

dH

dX

(
1 − Pr−1 − Z

H

)
e−Z/H . (4.10)

Equations (4.6)–(4.10) describe the solution in the thermal boundary layer in terms
of the functions θ0(X), H (X), and P∞(X), which are determined by matching.

5. Matching
5.1. Matching between the Ekman and thermal boundary layers

Matching the pressure P between the Ekman layer and the thermal boundary layer
leads to

P0 = θ0H + P∞. (5.1)

Matching the vertical velocity W = −1/H to (3.9) leads to

1

4X�

d

dX

(
X� dP0

dX

)
+

1

H
= 0. (5.2)

Matching the temperature θ leads to θ0(X) = 1.
The transverse velocity V matches automatically (owing to the matching of P ), and

the outward velocity U does not need to be matched at this order since it decays to
zero towards the base of the Ekman layer, and Ua has a much smaller scale in the
thermal boundary layer.

Eliminating P0 and θ0, we obtain

1

X�

d

dX

[
X�

(
dH

dX
+

dP∞

dX

)]
+

4

H
= 0. (5.3)

5.2. Matching between the thermal boundary layer and the bulk fluid

The required behaviour of the solution in the thermal boundary layer as Z → ∞
depends on whether or not there is a horizontal boundary within a certain distance
below the heated plate.

If there is no such boundary, or if there is one at a (dimensional) distance much
greater than E−1L, then there is sufficient space for the Taylor–Proudman constraint
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to be relaxed, and fluid can be drawn in without a significant pressure gradient.
Consequently, we can write P∞(X) = 0 and P0 = H . We then obtain an equation for
H (X):

1

X�

d

dX

(
X� dH

dX

)
+

4

H
= 0. (5.4)

With knowledge of H (X), and hence of P0(X) and P∞(X), the full solution may be
recovered from (3.6)–(3.9) and (4.6)–(4.10).

If there is a lower boundary at Z = Z∗, with 1 � Z∗ � Ra1/2E−1/4 (i.e. greater than
the thickness of the thermal boundary layer, and less than Taylor adjustment length),
then a second Ekman layer forms above it. By analogy with (3.9), the horizontal
pressure gradient as Z → Z∗ is coupled to the vertical velocity W = −1/H that
persists from the thermal boundary layer by

W (X, Z∗) = − 1

4X�

d

dX

(
X� dP∞

dX

)
= − 1

H
. (5.5)

Combining this with (5.3), we find that

P∞(X) = − 1
2
H (X), P0(X) = 1

2
H (X), (5.6)

and the equation for H (X) is now

1

X�

d

dX

(
X� dH

dX

)
+

8

H
= 0. (5.7)

With the amended expressions (5.6) for P0 and P∞, the full solution can be recovered
from (3.6)–(3.9) and (4.6)–(4.10) as before.

The net effect of a bottom boundary is to halve the effective pressure gradient from
the thermal field that acts on the upper Ekman layer, so that an equal but opposite
pressure gradient can act on the lower Ekman layer to balance the vertical fluxes. The
thermal boundary layer is then an adjustment region from anticyclonic circulation
close to the upper Ekman layer to cyclonic circulation that matches with the interior
flow (and thence to the lower Ekman layer). We shall not concern ourselves further
with the case of a lower boundary, since the transformation H 	→

√
2H can be used

to obtain the solution of (5.7) from that of (5.4).

6. Solution for H (X)

Equation (5.4) is subject to the symmetry (� = 0) or regularity (� = 1) condition
H ′(0) = 0, and some kind of boundary condition at the plate edge X = 1. Since (5.4)
is invariant under the transformation (X, H ) 	→ (αX, αH ), the solution is of the form

H (X) = H (0) Φ(X/H (0)), (6.1)

where Φ(X) is the solution of (5.4) with Φ(0) = 1 and Φ ′(0) = 0.
For the planar strip (� = 0) there is an analytic solution

Φ(ξ ) = exp{−[erf−1(ξ
√

8/π)]2}. (6.2)

For the axisymmetric disk (� = 1), the most we can obtain analytically is a series
expansion

Φ(ξ ) = 1 − ξ 2 − 1

4
ξ 4 − 5

36
ξ 6 − · · · (6.3)

about ξ = 0, which must be extended numerically.
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Figure 3. Solutions to equation (5.4) for the dimensionless thickness H of the thermal
boundary layer as a function of the dimensionless horizontal coordinate X.

In both cases, we find that Φ(ξ ) → 0 and Φ ′(ξ ) → ∞ as ξ → ξ0, where ξ0 = (π/8)1/2

(� = 0) or ξ0 = 0.845 (� = 1). As shown in § 7, the plate edge X = 1 corresponds
(at least to leading order) to the singularity at ξ = ξ0. From this we deduce that
H (0) = 1.596 (� = 0) or 1.183 (� = 1).

The solutions for H (X) are shown in figure 3. Once H (X) is known, the full
solution for the fluid velocity and temperature can then be recovered from (3.6)–(3.9)
and (4.6)–(4.10) together with the scalings (2.11)–(2.15). As might be expected from
the geometry, a disk drains more effectively than a strip, in the sense that H (X) is
smaller for a disk.

7. Flow over the plate edge
In the solution described above,

H (X) ∼ (X0 − X)[−8 ln(X0 − X)]1/2 and H ′(X) ∼ [−8 ln(X0 − X)]1/2 (7.1)

as X → X0, where X = X0 ≈ 1 is the location of the singularity of (5.4). The
divergence of H −1 and H ′ implies a divergence of the velocities in (3.8), (3.9) and
(4.7)–(4.10), and also of the heat flux from (3.6). Many of these divergences are only
logarithmic, but they indicate that the flow over the edge of the plate must be in a
different dynamic regime from that which governs the boundary-layer structure below
the rest of the plate. In order to calculate the asymptotic form of the total heat flux,
we need to examine the flow structure near the edge.

7.1. Asymptotic structure near the edge

Close to the plate edge, the thickness of the thermal boundary layer may become
much less than the fixed Ekman scale δE = LE−1/2. Rotational effects would then be
negligible and the flow would be in the same regime as that studied by Higuera (1993).
We also expect the gradient of the thermal boundary-layer thickness to become O(1)
as the corner is approached, at which point the fully two-dimensional equations must
be used instead of boundary-layer approximations. However, as shown below, the flow
does not pass directly from the solution of §§ 3–6 into either of these new regimes.

We estimate where the asymptotic approximations employed in §§ 3 and 4 cease
to apply by substituting the solution obtained for the plate interior into the full
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Figure 4. The two possible sequences of asymptotic regions near the plate edge: (i) interior,
(ii) transition, (iii) ‘non-rotating’ boundary layer, and (iv) corner. The lengths are shown in
terms of the dimensionless coordinates X and Z (see (2.11)), and ε = Ra1/2E 5/4 � 1. The
unscaled slope of the thermal boundary layer is dh/dx = (δT /L) dH/dX .

equations (2.1)–(2.5) and examining the size of the neglected terms. We find that the
approximations break down first in the thermal boundary layer as X → X0, owing to
one of two sets of terms.

The first set relates to the growth of the ageostrophic velocity Ua as X → X0. As a
result of this growth, Ua can no longer be neglected in (4.1) and horizontal advection
can no longer be neglected in (4.3) and (4.5). These terms become significant when

H

H ′2 ∼ Ra1/2E 5/4 ⇒ (X0 − X) ∼ Ra1/2E 5/4
(
lnRa−1/2E−5/4

)1/2
. (7.2)

The second set relates to the growth of horizontal gradients as X → X0. Horizontal
diffusion becomes comparable with vertical diffusion in (4.3) and (4.5) when

H ′2 ∼ Ra E 3/2 ⇒ (X0 − X) ∼ exp
(
−8Ra E 3/2

)
. (7.3)

From (2.17), both of these possibilities imply that X0 −X � 1, and the exponentially
small factor in (7.3) makes it likely that (7.2) is attained first. We assume this to be the
case, and define ε = Ra1/2E 5/4 � 1. The end of the interior regime thus corresponds
to the breakdown of geostrophy in the thermal boundary layer.

The previously calculated solution below the interior of the plate, region (i) in
figure 4, applies until

(X0 − X) ∼ ε[ln(1/ε)]1/2 ⇒ H ∼ ε ln(1/ε) , H ′ ∼ [ln(1/ε)]1/2. (7.4)

At this point, the thickness of the thermal boundary layer is still much greater
than the O(ε) thickness of the Ekman layer, and the unscaled slope dh/dx is still
small. We therefore anticipate a transitional region (ii) in which rotational effects are
still important and boundary-layer approximations still apply. This transition region
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continues until either

H ∼ δE

δT

= ε or
dH

dX
∼ L

δT

= Ra1/2E−3/4. (7.5)

These conditions correspond respectively to rotational effects ceasing to be leading
order, and to the slope of the thermal boundary layer becoming O(1). As outlined
in Appendix, the Prandtl number controls which condition is met first (larger Pr
favours the first case).

In the first case there is a further region (iii) in which the unscaled slope dh/dx of
the thermal boundary layer is still small, and the flow is described by the non-rotating
boundary-layer equations. When the slope becomes O(1), the fluid enters a final
region (iv) in which it turns the corner and rises round the edge of the plate. These
regions are as shown in figure 4(a). Higuera (1993) analysed the singularity at the
edge of a heated plate in a non-rotating system, and obtained solutions applicable
to regions (iii) and (iv). In the second case, region (ii) matches directly to the corner
region (iv), as shown in figure 4(b), and rotational effects also play a role in region
(iv).

The horizontal pressure gradient driving the flow is proportional to the gradient of
the thermal boundary-layer thickness H , and the outward mass flux is an increasing
function of X owing to the vertical upflow W . It is therefore reasonable to assume
that in regions (ii)–(iv) H ′ remains at least as large as the O([ln 1/ε]1/2) value at
the outer edge of region (i). With the transition heights given by (7.4) and (7.5),
this assumption about H ′ sets upper bounds on the (dimensionless) lengths of these
regions: O(ε[ln 1/ε]1/2) for region (ii) and O(ε[ln 1/ε]−1/2) for regions (iii) and (iv).
Regions (ii)–(iv) are therefore all short compared with the total length of the plate.
Since the transition from the interior region (i) occurs at a distance O(ε[ln 1/ε]1/2)
before the singularity at X = X0, and since regions (ii)–(iv) are also at most this length,
we deduce that |1 − X0| = O(ε[ln 1/ε]1/2). Therefore it was indeed appropriate to set
the singularity to coincide with the plate edge when calculating the leading-order
interior solution in § 6.

7.2. The total heat flux

We turn now to calculation of the heat flux from the plate, for which the usual
dimensionless expression is the Nusselt number. We define this by

Nu = − 1

L��T

∫ L

0

x� ∂T

∂z

∣∣∣∣
z=0

dx = −Ra1/2E 3/4

∫ 1

0

X� ∂θ

∂Z

∣∣∣∣
Z=0

dX . (7.6)

The contribution Nu i to the heat flux from region (i) is found by integrating the
solution from § 6 over most of the plate. Substituting from (4.6) and making use of
(5.4), we obtain

Nu i ∼ Ra1/2E 3/4

∫ X0−ε(ln 1/ε)1/2

0

X�

H
dX ∼ 2−1/2Ra1/2E 3/4[ln(1/ε)]1/2 . (7.7)

An upper bound on the order of magnitude of the heat flux Nu ii from region (ii)
of the plate is obtained from a thermal boundary layer that decreases linearly in
thickness from O(ε ln 1/ε) to O(ε) over a distance O(ε[ln 1/ε]1/2). Computing the
appropriate integral, we find that

Nu ii � Ra1/2E 3/4 ln[ln(1/ε)]

[ln(1/ε)]1/2
� Nu i (7.8)
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For the case where region (iii) exists, we match the heat and mass fluxes and the
layer height to the solution presented by Higuera (1993) for a non-rotating plate (see
Appendix for details). The total heat flux in Higuera’s solution is dominated by the
heat flux from the interior of the plate rather than that from the singularity near
the edge. We find that regions (iii) and (iv) correspond to only a small end-region of
Higuera’s solution, and hence that the heat-flux contribution is small compared with
the flux Nu ii + Nu i entering from region (ii). Hence Nu iii + Nu iv � Nu i. For the case
where region (iii) does not appear, the flux from region (iv) is included in the estimate
of Nu ii, since the thermal boundary layer H remains thicker than O(ε).

In all cases, we conclude that the total heat flux is dominated by the contribution
Nu i from the interior region, and hence that

Nu ∼ 2−1/2Ra1/2E 3/4
[
ln

(
Ra−1/2E−5/4

)]1/2
. (7.9)

The main algebraic part of this scaling originates from δT /L = Ra−1/2E−3/4 and is
associated with the confinement of the thermal boundary layer by Ekman suction.
The logarithmic factor arises from a further enhancement due to the singularity as
the plate edge is approached.

8. Uniform-heat-flux boundary condition
In §§ 3–7, we described the solution for a uniform plate temperature. The other

canonical boundary condition is that of uniform heat flux. The problem is then
characterized by a total heat flux (say 2Q for the strip and πQ for the disk), rather
than a temperature difference �T . We now need to determine the temperature of the
plate as part of the solution.

The analysis for a uniform heat flux is quite similar to that for a uniform
temperature, and we are able to re-use the scalings of § 2.2 by setting

�T =
Q δT

k L1+�
(8.1)

in (2.6) and (2.15), where k is the thermal conductivity of the fluid. The thermal
boundary condition on the plate is then ∂θ/∂Z = −1 rather than θ = 1.

The main difference in the analysis is that it is necessary to keep θ0(X) as an extra
independent variable, since the temperature in the Ekman layer is unknown at the
outset. Integrating (3.5) across the Ekman layer, we obtain a boundary condition on
the temperature gradient at the top of the thermal boundary layer in the form

∂θ

∂Z

∣∣∣∣
Z→0

= −1 +
dθ0

dX

∫ ∞

0

U dζ. (8.2)

Following the previous analysis, we then obtain a pair of equations governing the
behaviour of the solution. The direct analogue of (5.4) is

1

X�

d

dX

(
X� d(θ0H )

dX

)
+

4

H
= 0, (8.3)

and we also have a new equation

θ0

H
= 1 +

1

4

d(θ0H )

dX

dθ0

dX
, (8.4)

which results from the application of (8.2) to the temperature profile (4.6).
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Figure 5. The dimensionless thickness H of the thermal boundary layer and the dimensionless
temperature θ0 of the plate as functions of the horizontal coordinate X for the case of a uniform
heat flux.

The boundary conditions on (8.3) and (8.4) are θ ′
0(0) = H ′(0) = 0 from symmetry

or regularity and H (1) = 0 from matching at the plate edge. Invariance under the
transformation (X, H, θ0) 	→ (α3X, α2H, α2θ0) allows the solution again to be obtained
by rescaling a single integration from X = 0. The thickness H of the thermal boundary
layer and temperature θ0 of the plate are plotted in figure 5.

In this case the heat flux near X = 1 is necessarily finite, but the layer thickness
still goes to zero and the mass flux diverges. This singularity (identified with the plate
edge) exhibits the local behaviour

H (X) ∼ (1 − X)[36(1 + �)]1/3[− ln(1 − X)]2/3, (8.5)

θ0(X) ∼
[

4

3(1 + �)2

]1/3

[− ln(1 − X)]−1/3. (8.6)

As before, short correction regions must be introduced to regularize the flow in the
neighbourhood of the corner, but these do not affect the leading-order solution under
the interior of the plate.

9. Conclusions
We have calculated asymptotic solutions for the Ekman and thermal boundary-

layer structures beneath a horizontal heated plate in a rapidly rotating system. For
E−3/2 � Ra � E−5/2 the lateral drainage of hot fluid occurs primarily in the Ekman
layer, while the thermal boundary layer is much thicker than the Ekman layer and
confined by Ekman suction. The details of the breakdown of this structure near the
edge of the plate do not affect the solution under the plate at leading order, but
simply serve to impose a boundary condition of zero boundary-layer thickness at the
edge. In some sense this is fortunate since the details of the breakdown (figure 4) are
delicate and involve subregions that differ only logarithmically from each other.

In addition to the structure of the solution, the main results are the heat flux
from a plate held at a fixed temperature and the temperature distribution on a plate
maintained with a uniform heat flux, which are calculated for both a strip and a
disk. In the fixed-temperature problem, the asymptotic scaling (7.9) for the Nusselt
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number (including the numerical pre-factor) applies to both geometries, which might
initially be surprising. However, this can be understood from the fact that the
dominant contribution to the heat transfer is due to the logarithmic singularity (7.1)
in the boundary-layer solution as the fluid nears the plate edge. This singularity is
independent of the geometry, and the scalings employed are such that the length of
the plate edge (in the y-direction) appears equivalent in the two geometries.

The main algebraic part of the Nusselt-number scaling (7.9) originates from
the thermal boundary-layer scaling δT /L ∼ Ra−1/2E−3/4 under the plate. Comparing
the Nusselt-number scaling with the Ra1/5 scaling that applies in the absence of
rotation, we see that the rotation inhibits the convection by a factor of approximately
(Ra1/2E 5/4)3/5 � 1. Thus the rotation, and specifically the confinement of the outflow
to a thin Ekman layer, significantly reduces the overall heat transfer.

An interesting question is whether the rotational constraint could be broken by
instability and unsteadiness in the flow. Small-scale instability and turbulence could
lead, as is common in geophysical flows, to effective enhancement of the molecular
diffusivities ν and κ , but need not qualitatively change the overall solution structure.
Large-scale baroclinic instability, such as that that seen, for example, on the edges of
coastal currents or localized free-surfaces vortices (e.g. Griffiths & Linden 1981a , b),
might lead to horizontal eddies on the O(Ra1/4E 5/8Pr−1/2L) scale of the Rossby
radius in the thermal boundary layer and contribute to the lateral heat transport.
However, baroclinic instability is unlikely without a second boundary below the plate,
thermal diffusion and Ekman suction are stabilizing influences, and steady flow was
observed in the top-heated rotating experiments of Pedlosky et al. (1997). Given the
uncertainty, it would be desirable in future work to examine the stability of the steady
flows described above, either through numerical stability analysis of perturbations
about the steady solutions that are harmonic in y and t or through experimental
investigations.

Finally, we note that, while we have solved here two particular problems with
uniform boundary conditions, the method for the interior solution is more widely
applicable. It would now be relatively straightforward to produce steady solutions for
any imposed temperature, or heat-flux conditions.

Appendix. Matching up to the corner region
In the non-rotating version of the heated-plate problem (studied by Higuera 1993,

and many others) there are well-defined scales for the (dimensional) horizontal mass

flux q and thermal boundary-layer thickness h. For an infinite strip of width 2L̂, with

corresponding Rayleigh number R̂a , it is found that

h = L̂R̂a
−1/5

f (η), q = κR̂a
1/5

g(η), (A 1)

where η = x̂/L̂ is the scaled horizontal distance from the centre of the strip. The
functions f and g are O(1) over most of the strip (with the obvious exception that
g(η) → 0 at the centre). Higuera (1993) examined the singularity at the edge of the

plate, and showed that f (η) ∼ (1 − η)1/4 in R̂a
−1/5

� 1 − η � 1 for Pr � 1, whereas
f (η) remains O(1) with f ′ → ∞ as η → 1 for Pr = O(1). In both cases there is a final
region, analogous to region (iv) in figure 4, corresponding to flow round the plate
corner.
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Returning to the rotating problem, the matching between the transition region (ii)
of figure 4 and a non-rotating boundary layer (iii) should occur where

h ∼ LE 1/2 , q ∼ κRa1/2E 3/4
(
lnRa−1/2E−5/4

)1/2
. (A 2)

Comparison of these values with those from the non-rotating solution yields the

effective length L̂ and matching point η∗. By examining the ratio q2/h3 to eliminate

L̂, we obtain

g2

f 3
∼

(
lnRa−1/2E−5/4

)1/2 � 1. (A 3)

For Pr � 1 this implies that (1 − η∗) � 1 (i.e. region (iii) corresponds to only the
outermost part of the non-rotating solution). For Pr = O(1) the matching condition
(A 3) cannot be satisfied, which suggests that the quasi-parallel-flow condition dh/dx

must break down before H ∼ ε. In other words, region (ii) ends with a rotating
analogue of the singularity in slope identified by Higuera (1993), and region (ii)
matches directly to the corner region (iv) in which ∂h/∂x = O(1). In either case, the
details of the flow in these end regions affect neither the leading-order heat transfer
nor the flow structure and temperature distribution under most of the plate, and
hence they will not be investigated further here.
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